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The flow past a circular cylinder moving close to a free surface at  high Froude 
number is investigated by the method of matched asymptotic expansions. In  
contrast with the linearized solution in which the dimensionless depth of im- 
mersion h = h’g/P2 is kept constant, in the present analysis h + 0 as Fr + co. 

The inner flow model is that of a non-separated non-linear gravity-free 
flow past a doublet, while the linear outer solution is that of a singularity a t  the 
free surface. At deep submergence the solution coincides with the linearized 
solution. At moderate immersion depths the linearized solution is still valid, 
provided that the depth is replaced by an effective depth, larger than the actual 
one. For a body close to the free surface the non-linear solution differs significantly 
from the linearized solution. 

1. Introduction 
The problem of a steady potential flow of a heavy liquid past a submerged 

circular cylinder is considered herein. The exact equations of flow, given here for 
convenience of reference, are (figure 1) 

Re W‘2--;.+igw‘ = 0 (y‘ = q’), ( T  ) 
@’ = 0 (y’ = q‘), (2) 

$‘ = const. (x12+y’2 = O), (3) 

w‘ = U’; q‘ = h’ (x’ -+-a), (4) 

where w’ is the complex velocity, f’ = $‘+i$‘ the complex potential and 
x’ = x’ + iy’ a complex variable. 

The non-linearity of ( 1 )  has generally defied attempts to solve the problem 
analytically, or even numerically. 

D - - 
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I 
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FIGURE 1. Steady free-surface flow past a submerged cylinder. 
12-2 
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Approximate solutions have been sought by perturbation methods. The wave- 
making rbgime, in which we are interested here, corresponds to an expansion in 
which e = a‘g1U‘2 is a small parameter, such that for E = 0,  the basic unper- 
turbed flow is uniform. The only other dimensionless parameter upon which 
the solution depends is h = h’g/lY2. The only type of solution considered so 
far is that corresponding to h = O ( l ) ,  or to H = h‘/a’ tending to infinity like 
l /e as E -+ 0. 

Lamb’s first-order solution of this type for a doublet, given in 1913 (Lamb 
1932), may be written in the following form: 

where 

f = z + e 2  

u ,in 
Ei-(iu) = j-m . p h .  

( 5 )  

The integration is carried out in the h lower half-plane, and the dimensionless 
outer variables are defined as z = z‘g/ U f 2 ,  h = h’g/Ut2, e = a’s/ Ut2 ,  and f = f ’ g /  Uf3.  

Higher-order corrections have been derived by Havelock (1926), the pro- 
cedure being given in a systematic manner by Wehausen (Wehausen & Laitone 
1960, p. 574). In  these higher-order approximations, only the flow in the vicinity 
of the body has been corrected, while the free-surface condition has been kept in 
its first-order version. This procedure is not consistent in principle, since the body 
and the free-surface contributions are of the same order. Moreover, detailed com- 
putations carried out by Tuck (1965) have shown that (i) the second-order 
non-linear effects become very important when the cylinder is not too far from 
the free surface, and (ii) the second-order correction associated with the non- 
linearity of the free-surface condition is more important than the one related to 
the body condition. 

In both applications and theory it is important to determine the flow pattern 
in the case of submerged bodies moving close to the free surface, which is also the 
case in which the wave drag and lift are significant. This is the motivation of the 
present work, in which we let h = h(e) tend to zero as e -+ 0, i.e. we consider a 
limit in which the body-submergence Froude number tends to infinity as the 
Froude number based on the cylinder radius tends to infinity. This type of solu- 
tion is, hopefully, helpful in understanding non-linear ship-wave effects, as well 
as other related problems. 

In  the usual linearized solution ( 5 ) ,  the flow in the vicinity of the doublet 
( z  -+ 0)’ and that near the free surface, are separated. If we let h + 0, the body 
singularity moves towards the unperturbed free surface, and the solution be- 
comes singular there, as we can find by an additional expansion of (5 ) ,  or from 
examination of Tuck’s results. The deterioration of the solution near the origin 
expressed by ( 5 )  is due to the fact that the near-body and near-free-surface 
flows interact non-linearly even at  first order. 

In  $ 2  a uniform solution for the case h = o(1) is sought by the method of 
matched asymptotic expansions. 
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2. Inner and outer expansions in the auxiliary < plane 
As will be shown later, the inner problem is that of a non-linear flow without 

gravity past the cylinder. To simplify the computations, we replace the cylinder 
by a doublet. Tuck's (1965) results suggest that the error associated with this 
assumption is less severe than the one connected with the non-linearity of the 

----- 
Free surface 

FIGTJX 2. The shapes of the closed body and of the free surface for a flow pas a doublet at 
the origin (equation (26)): -, 9 + g 2  = 1 ;  -.-*-, a/x = 0.4, x = 2-38, $stag = -0.20; 
_--- , a/X = 0.7, ,y = 1.28, = - 0.46. = - 0.34; - -  - -, alx = 1.0, x = 0.86, 

free-surface condition. Moreover, the present computations show that by a proper 
choice of the doublet strength, the shape of the resulting closed body is not far 
from that of a cylinder (figure 2).  At any rate, the present method may be used 
in order to sharpen the results by adding higher order singularities to the doublet, 
such that the body shape could be reproduced with the desired accuracy. 

To solve the non-linear inner problem it is convenient to operate in the f 
complex potential plane (e.g. Tulin 1963) or in an auxiliary plane related to f 
(e.g.Wu 1967). Let G,f, and z" be the dimensionless inner variables, referred to U' 
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and (I.' as basic velocity and length, respectively, i.e. G = w'/U', f = f l a ' U ' ,  
X" = z'/u'. The fplane is mapped onto the auxiliary g = + ip plane by 

such that the free-surface $ = 0 is mapped on p = x, and the doublet on 5 = 0. 
The constants CL and x (strength and location of doublet in the [ plane) will be 
determined subsequently from data from the physical plane. 

The exact free-surface condition (1) becomes, in terms of the inner variables, 

The body condition (3) is replaced by the requirement that the closed body gener- 
ated by the doublet, located at z" = 0, should be as close as possible to a cylinder 
of unit radius. The analytical expression of this requirement is discussed in $3. 
The conditions a t  infinity (4) are replaced by matching with the outer solution. 

We consider now an inner expansion, 

G( C) = Go( C) + &) Gl( [) + . . . , (8) 

where 8,(e) = o(1). The expansion of (7) gives for the zero-order term (the only 
one considered here) 

i.e. a gravity-free flow. The mapping of the physical plane is found from 

pol = const. ( p  = x), (9) 

The inner solution will be shown to be singular far from the body, where gravity 
and inertial effects are both important. For the region far from the body ([ 3 1) 
we consider an outer expansion. With z = E X " ,  f = ef,  w = G (outer variables re- 
ferred to U' and U'z/g)  and 5 = €[, the exact equations (1) and (4) become 

The outer solution is now expanded in the cplane: 

leading at  first order, by the expansion of (1 1) and ( 1 2 ) ,  to 

w , = o  (5-t  -a), (15) 
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while z is determined by a quadrature in the following form: 

183 

where c is an arbitrary real constant. 

3. The zero-order inner solution 
There are several different possible models of free-surface flow without gravity 

past a body. Here we are primarily interested in finding the modification of 
the deep submergence solution as the cylinder approaches the free surface but 
still remains submerged. For this reason, we assume that the free surface is con- 
tinuous at  zero order, and exclude the possibility of its detachment in the form 
of a jet. To simplify matters, ( 9 )  is replaced by 

(Gal = 1 ( p  = x). (17) 

In  order that the only singularity of Go in the lower half-plane should be of the 
doublet type, the function dz"/d[ has to be regular in the lower half-plane, since 
8, = (d f /dg)  (dc/dz"), and dfld6 (equation (6)) has the proper singularity a t  g = 0. 
Hence, the function w = In dz"/d[ = ln(df/d[) (l/Go) is regular in the lower half- 
plane p < x ,  and has a known real part along p = x ,  given by (17)  and ( 1 6 ) :  

With a new variable. 
A = - - - ,  6- i X  

X ( 1 9 )  

the determination of w becomes a Dirichlet problem for the lower half-plane 
Imh = 0. The problem is solved by the Cauchy integral along I m h  = 0, with 
proper care of the branch lines of w .  The function 

aa ( P -  1) 
2 2  (h2+ 1)2'  

1 - 2 - -  

obtained from (18) by substituting (19) has two zeros and a double pole in the 
lower half-plane, located at  

h = k d - i e ,  (20) 

A = - '  2, ( 2 1 )  

(22 )  

respectively, where 
(2Cx2/X2+ l ) t+a2 /X2-  

2 
d =  [ 
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The result of the Cauchy integral for w is readily found as 

(A - d - ie)2 ( A  + d - ie)2 
6 = In , (24) ( A  - $4 

the logarithm being taken at  its principal value, such that for h -+ f 03 the 
argument is zero. 

With the aid of (19), and (24), we immediately find 

a2 ] (1-7)~ 
d + i( 1 + 

e)]2 [ + 

d - i( 1 + e)] ' 

c 
and, by further integration, 

where 
A = 4x( l -e ) ,  

B = 2x2[d2 + 3( 1 - e)2], 

C = 2x3( 1 - e )  [dz + (1 - e)2]2, 

D = - L  3x 4 d 2  + (1 -e)212, 

E = -Aln2~--+-+-. 
2 2  4x2 8x3 

Inspection of (25) and (26) shows that Go has its only singularity, of the doublet 
type, at g = 0, while z" is regular in the half plane p < x and vanishes at  g = 0, 
All the singularities of z" are located at  g = 2ix, the image of the doublet across 
p = x. The logarithmic term in (26) has zero argument along 

The next step is the derivation of the relationship between a2 (the doublet 
strength) andx (its location in the cplane). Two possibilities have been considered : 

(i) The doublet strength in the z" plane is equal to unity. This is tantamount to 
defining a' (and E accordingly) strictly as the doublet strength. The expansion of 
(25) and (26) in the vicinity of = 0 gives for the coefficient of - 1/Z2 in the G,, 
expression, 

= 0, p < 22. 

It turns out, however, that the closed body generated by the doublet, although 
close in its shape to a cylinder, has a radius different from unity for small 2. 

(ii) The radius of the closed body is approximately equal to unity. The stagna- 
tion point of co-ordinate, 

Cd = x [ + d + i ( l - e ) l ,  (29) 
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had been selected as the representative point of the body and its abscissa in the z" 
had been made equal to unity. Using (26) and (29), the following relationship is 
easily found: 

d 0 ? ~ + 3 ( 1 - e ) ~  
l + e  d2+(1+e)2 

arctan - + 2 

4(1 - e )  [o?+ (1 -e)a] (1 + e) 
[d2 + (1 + e)2]2 

- 

-- 1[d2+(1-e)212[d3-3d(l+e)2]) = 1. (30) 
3 [d2 + (1 + e)'-?I3 

This latter condition has been adopted in the present work in order to compute 
x and a. x and a as functions of a]x are given in figures 3 and 4. 

Moderate Body close to *" 
Deep 

submergence submergence ' the surface - - -  

" 
0.1 0:2 0.3 0.4 0.5 0.7 0.9 1.0 1.5 2.0 

alx 

FIGURE 3. The representation of the different inner coefficients: 0 A (equation (27)); 
@ B (27); 0 B' (36); @ a (30); @ E (27); 8 E'(36). 

In  figure 2 the shapes of the free surface and the closed body are given for a 
few values of a and x. The computations have been carried out numerically, as 
follows: 

(i) Different arbitrary values have been assigned to a/x. 
(5) d,  e, a and x have been computed with the aid of (22), (23), and (30). 
(iii) the value of 
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has been computed at the stagnation point (29). (iv) The corresponding stream- 
lines, of $ = $&, aa well as the shape of the free surface, have been computed 
using (31) and (26), respectively. 

The streamlines are symmetrical with respect to the axis Re g = 0. This pro- 
perty is a result of (6), which gives 

3 

2 

1 

0 

- 1  

\ 

0 0.5 I 4 1.5 

4% 
FIGURE 4. The relationship between H = h'la', x, a/x and U'/(ga')*: - , H (equation 

(53)); ---, x- 1/x (44); ----- f x (30). 

Examination of figure 2 shows that, for sufficiently small values of a/x 
(a/x < 0.4), the closed body generated by the flow past the doublet practically 
coincides with the circular cylinder. At higher a/X, when the body approaches 
the free-surface, the deviations are still not too large. This result strengthens 
the conclusion drawn by Tuck (1965)) and suggests that representation of bodies 
near a free surface by singularity distributions may be quite accurate. 
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4. The first-order outer solution and its matching with the inner solu- 
tion 

We now seek w1(6) satisfying (14), and (15). The behaviour of w1 near the origin 
is dictated by the behaviour of the inner solution. 

The expansion of Go (25) for large [ gives 

B - A2 +o[ ] - i A  a2 a2 
wo = I----- 

[- zix ~2 ([- z ix)2+ ([-- 2 iXy  ([- 2ix)2 ([- 2 g ) 3  7 

(34) 
while 2 (26) behaves for large g like 

z " =  [+iAln([-2i~)+iE+O (35) 

In  figure 3 a, A ,  B and E are given as functions of a/x. The computations have 
been carried out with the aid of (27 )  and (30). x as a function of a/x is given in 
figure 4. Three approximate types of outer solutions are derived subsequently, 
corresponding to three ranges of values of a/x and x .  

(i) Deep submergence (a/x < 0.2 ,  x > 5) 

In  this range (figure 3) the coefficient A is negligible, while a N 1 and B N 2 .  
In  fact, the systematic expansion of A ,  B, E and a ( (27 )  and (30)) for 

a4 
small values of a/x gives 

A ' = - + O ( - $ ) ,  2x3 

Hence, (34) and (35) degenerate in this range into 

I 1 1 
wo = 1-,f +..., 

52 ([- 2ix)2 

- 1  

X 
z" = 5--+ ..., 

or, in terms of outer variables, 

is 
X 

2 = C--+O(e2). 

(37) 

The outer solution (13) satisfying (14) and (15), and matching w of (38) near 
the origin, is found immediately as follows: 

Sl(E) = €2, (39) 
1 1 2i 

w1 = --+ +- + 2 exp ( - 2 q  -is) Ei- (i%+ 2 q ) .  (40) 
52 (5 - 2i€X)2 5 - 2i€X 
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The matching of z ((16) and (38)) gives 

where 1/x has been neglected in comparison with x.  But w1 of (40)) with z replac- 
ing 5 and h replacing ex (equation (41)), coincides with the linearized classical 
solution of Lamb ( 5 ) .  Hence, for a sufficiently large depth of immersion ( H  > 5 ) )  
the present method recovers the familiar linearized solution. 

(ii) Moderate immersion depth (0.2 < alx < 0.4; 2.5 < x < 5; 2 < H < 5 )  

In  this range A is still negligible (figure 3)) B 
The outer limits of Go and 2 are given now by the following expressions: 

B' = 2a2 and E r E = - 112. 

i E  

X 
z = (;--+O(e2). 

The outer solution w1(5) is again given by (40)) while (39) is replaced by 

a,(€) = a2q. (43) 

Matching of z ((16) and (42)) now yields 

The wave resistance may be found from the outer solution by computing the 
energy radiated by the far waves. With the aid of ( l6) ,  (40) and (43)) the wave 
resistance becomes 

- 47ra4e2 exp ( - 2e2x), R,=-- Rj. 
7rpgaf2 (45) 

while the Iinearized solution ((39), (40) and (41)) yields 

R, = 4ns2exp ( - 2eH). (46) 

Comparison of (45) with (46) shows that the wave resistance based on the linear- 
ized solution is modified in the range of moderate immersion depths by two 
factors: 

(i) The magnitude is reduced by a factor of a4. This reduction reflects mainly 
the influence of the body shape, since a is the doublet strength. This factor, 
however, is close to unity, and its minimal value, attained for alx = 0.4, is 
(figure 3) a4 = 0.82. 

(ii) A reduction of the magnitude of R, by a factor exp [ - Zs(x-H)] ,  where 
x depends non-linearly on H through (44). This reduction represents the effect 
of the non-linearity of the free-surface condition. It states, in fact, that the effec- 
tive depth of immersion x is larger than the actual one H .  As an example, for 
H = 2 and E = 0.5 (i.e. U'/(gh') = 1)) exp [ - 2e(x - H ) ]  = 0.66. Hence, the effect 
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of the non-linearity of the free-surface is more important in this case than that 
of the body. This conclusion is in qualitative agreement with the results obtained 
by Tuck (1965), who has computed numerically the wave resistance up to the 
second-order term of the linearized solution. 

(iii) Body close to the free-surface (a/X > 0.4; x < 2.5; H < 2 )  

In this range of the submergence parameter x, A is no longer negligible in com- 
parison with a and B (figure 3). The outer limits of do and x" (( 34) and (35)) become 
in this case 

i iAE w =  1-- +0(€2). 

x = 5- iAsln B + eiA In g +  isE + O(e2).  
(47) 

I n  the previous approximations of this section, the leading singularity in the 
outer limit on the inner solution ((38) and (42)) was of a doublet type. I n  the case 
of a body close to the free-surface (47), the leading singularity is of a vortex type. 
The vortex originates from the image of the doublet across the free surface (34); 
it is not, therefore, related to a circulation condition for a sharp-edged body, 
but to the singular behaviour of a non-linear free-surface flow without gravity 
past a body (Gurevich 1965). 

The outer solution, satisfying (14) and (15), and matching w of (47), is found 
immediately by integration in the g plane (Wu 1967), as follows: 

4(4 = €7 

+ exp ( - ig) Ei-(i[) . 1 
Integration of (16), with the aid of ( 5 ) ,  gives for x 

x = c+ih-ie~+Aieexp ( - i c ) E i - ( i c ) + ~ c + O ( ~ ~ ) .  (49) 

In  order to check that the inner and outer solutions match, w,(y) and z ((48) and 
(49)) are expanded near g = 0,  using the expansion of Ei- (ic): 

where y is the Euler constant (y  = 0.5772). By substituting g = s[ and x = ex" 
in (48) and (49), and by expanding with e -+ 0, [ = O(l) ,  we obtain 

A i  
w = l---Aielne+O(s), s 

J I ih 
2 = c+- - ix + Ailn [+ Aiy + Ailne+ c + O(E) .  

E 

The inner limit of w, (51) obviously matches the outer limit of do of (47). More- 
over, the order of the gauge functions in the inner expansion are &(€) = elns, 
a,(€) = 8, . . . . 



190 G. Dugan 

The matching of z" ((51) and (47)) imposes the additional relationship, 

h = e(X+E)-Aelne-eAy, (52) 

or H = X+E-Alne-Ay. (53) 

H = k'la', as a function of e = a'glU'2 and ulx, is plotted in figure 4. Equations 
(53) and (30), and figure 4 (correspondingly) establish unique relationships 
between the outer parameters H ,  c,  and the inner variables a, x. The rQgime of 
moderate submergence, and the pertinent relationship between x and H of 
(44), may be easily identified on the left side of figure 4. The real constant c 
of (51) may be chosen equal to the difference in the arguments of lng of (47) 
and (51). 

A uniform solution for w and z may be written by adding the inner and the 
outer solutions and subtracting their common part. For instance, from (25) and 
(48), we obtain for w, in terms of the outer variables, 

a:%2 a2e2 

- Aeexp ( - i6) Ei- (ic), (54) 

6 6 
which is uniform up to the term of order e2. 

The solution for w and z covers a range of variation of H which is beyond the 
domainof validityof the linearized solution; e.g. H may be smaller than unity or 
even negative (figure 4), i.e. the body may protrude above the unperturbed up- 
stream level at  infinity. The physical validity of the inner model of a continuous 
free surface is, however, questionable for such small H .  It is more probable that 
the free surface breaks before the body, or creates a detached jet. For this reason, 
the present solution is of a rather mathematical interest for small H ;  its physical 
relevance has to be determined by experiment. 

The lift acting on the doublet may be found from the inner solution (25) by 
the Blasius theorem. Carrying out the integration yields 

Because of the symmetry of the inner solution, there is no drag at  zero order. 
The wave resistance may be computed from the outer solution (48), but the result 
will be of limited value, since we know that the next term of the outer solution, 
of order e2 and of doublet type, is associated with a wave comparable with those 
of the vortex solution (see the magnitude of A ,  a: and B in figure 3). Hence, the 
computation of the wave resistance has to be based on two terms of the outer 
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expansion at  least; the development of the higher-order terms is beyond the 
scope of the present study. 

In  figure 5 the lift given by (51) is represented as function of a/X. In  the same 
figure, the lift computed according to the linearized solution, 

1 1 8 €2 

4H3 2H2 H - f - + - - 2e3 exp ( - 2eH) Re Ei- (2eH) , (56) 

is represented for e = 0.25, by using the relationship between H and x of (44) .  
Inspection of figure 5 shows that, as alx increases, and correspondingly H 
decreases, Rvlin increases rapidly, and for H -+ 0 it tends to infinity (56). The 
present non-linear theory predicts a finite lift even for H negative. The agreement 
between R, of (55) and R, lin of (56) is slightly improved for smaller e. 

0 0.25 0.50 0.75 

alx 

FIQURE 5.  The lift force: @ - R, (equation (55)); @ -R,,, (56). 

5. Conclusions 
The method of matched asymptotic expansions permits the determination of 

a uniform solution of the flow past a body close to a free-surface. The method 
can be extended to treat flows past bodies of different shapes, like hydrofoils. 
The main difficulty is the solution of the non-linear inner problem of free-surface 
flow without gravity past the given body. But this problem is still much simpler 
than the original exact non-linear problem of free-surface flow with gravity. 
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